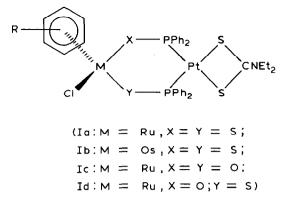
Journal of Organometallic Chemistry, 284 (1985) C12-C14 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

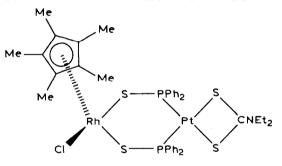
SYNTHESIS AND REACTIONS OF SOME HETEROBIMETALLIC AND MULTIMETALLIC COMPLEXES CONTAINING η -ARENE-RUTHENIUM(II), -OSMIUM(II) AND η -PENTAMETHYLCYCLOPENTADIENYL-RHODIUM(III) MOIETIES

J.D. FOTHERINGHAM and T.A. STEPHENSON* Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Great Britain) (Received November 23rd, 1984)

Summary


Heterobimetallic complexes such as $[\eta$ -areneMCl(SPPh₂)₂Pt(S₂CNEt₂)] (I, M = Ru, Os) and $[\eta$ -C₅Me₅RhCl(SPPh₂)₂Pt(S₂CNEt₂)] (II) have been synthesised by reaction of NEt₂H₂[Pt(S₂CNEt₂)(Ph₂PS)₂] with either [M(η -arene)Cl₂]₂ or [Rh(η -C₅Me₅)Cl₂]₂ (2/1) molar ratio). Further reactions of I include facile chloride displacement with a range of neutral ligands L to give [η -areneML(SPPh₂)₂Pt(S₂CNEt₂)]⁺ (III) cations and formation of tri- and penta-metallic species on treatment with more [Pt(S₂CNEt₂)(Ph₂PS)₂]⁻.

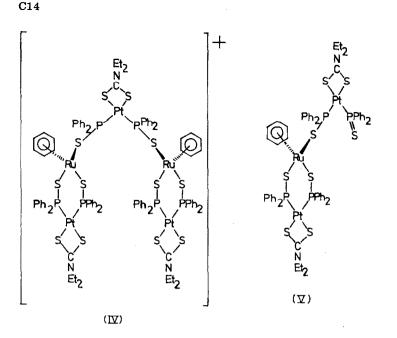
In the last decade, extensive studies on the synthesis and reactivity of the binuclear complexes $[Ru(\eta$ -arene)Cl₂]₂ (arene = C₆H₆, *p*-MeC₆H₄CHMe₂, C₆Me₆ etc.) have been published [1]. Such studies include bridge cleavage reactions with a variety of Lewis bases L to give $[Ru(\eta$ -arene)Cl₂L] or $[Ru(\eta$ -arene)ClL₂]⁺ and with anionic ligands such as S_2PR_2 , O_2CR [2] (L-L) to afford either $[Ru(\eta$ -arene)Cl(L-L)] or $[Ru(\eta$ -arene)(L-L)₂]. A wide range of homo-binuclear triple bridged cations of type $[Ru_2X_3 - (\eta$ -arene)₂]⁺ (X = Cl, Br, I, OH, OR, SR), [3] $[Ru_2HXY(\eta$ -arene)₂]⁺ (X = Y = Cl, OCOMe, OCOCF₃; X = Cl, Y = OCOMe or OCOCF₃) [4] and homo-tetranuclear cations such as $[Ru(\eta$ -C₆H₆)(OH)]_4⁴⁺ [5] and $[Ru_4(\eta$ -C₆H₆)_4 - $(\mu_2$ -OH)₄ $(\mu_4$ -O]²⁺ [6] are also available.


In this communication we report the high yield synthesis and some reactions of novel hetero-bimetallic and multimetallic compounds containing the $(\eta$ -arene)Ru^{II} moiety and related complexes incorporating $(\eta$ arene)Os^{II} and $(\eta$ -C₅Me₅)Rh^{III} fragments.

Thus, reaction of $[Ru(\eta - arene)Cl_2]_2$ with $NEt_2H_2[Pt(S_2CNEt_2) - (Ph_2PS)_2]$ [7] (1/2 molar ratio) in chloroform at ambient temperature gives,

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

on addition of methanol, high yields (75%) of the red solids $[(\eta$ -arene)-RuCl(SPPh₂)₂Pt(S₂CNEt₂)] (Ia) (arene = C₆H₆, p-MeC₆H₄CHMe₂). The same products are formed by treatment of $[Ru(\eta$ -arene)Cl(OCOMe)] with an equimolar amount of the $[Pt(S_2CNEt_2)(Ph_2PS)_2]^-$ anion. Similarly, reaction of NEt₂H₂[Pt(S₂CNEt₂)(Ph₂PS)₂] with either $[Os(p-MeC_6H_4CHMe_2)Cl_2]_2$ or $[Rh(\eta$ -C₅Me₅)Cl₂]₂ (in 2/1 molar ratio) gives high yields of the corresponding yellow $[\eta$ -p-MeC₆H₄CHMe₂)OsCl(SPPh₂)₂Pt(S₂CNEt₂)] (Ib) and dark red $[(\eta$ -C₅Me₅)RhCl(SPPh₂)₂Pt(S₂CNEt₂)] (II) respectively*.



Likewise, preliminary studies indicate that treatment of $[Ru(\eta-arene)Cl_2]_2$ with the anions $[Pt(S_2CNEt_2)(Ph_2PO)_2]^-$ and $[Pt(S_2CNEt_2)(Ph_2PO)Ph_2PS]^-$ [7] (in 1/2 molar ratio) yield the bimetallic complexes Ic and Id respectively.

Reaction of Ia or Ib with neutral ligands (L) under relatively mild conditions, followed by addition of methanolic solutions of Na[BPh₄] precipitates the heterobimetallic cations [(arene)ML(SPPh₂)₂Pt(S₂CNEt₂)]BPh₄ (III) (L = PPh₃, PEtPh₂, CO, PhC=CH etc.). These cations can also be prepared in some instances by reaction of the monomers [M(η arene)Cl₂L] with equimolar amounts of [Pt(S₂CNEt₂)(Ph₂PS)₂]^{-*}.

If Ia (arene = C_6H_6) is treated in chloroform with more $[Pt(S_2CNEt_2)-(Ph_2PS)_2]^-$ (2/1 molar ratio), the novel pentametallic cation IV is produced, whereas with equimolar ratios of Ia and the platinum anion, spectroscopic

^{*}All these complexes have been fully characterised by elemental analyses, IR and ¹H, ³¹P- ${}^{1}H$ and ¹³C- ${}^{1}H$ NMR spectroscopy.

evidence indicates the in situ formation of the trimetallic compound V containing bidentate and unidentate $[Pt(S_2CNEt_2)(Ph_2PS)_2]^-$ groups.

Further studies on the stoichiometric and catalytic reactions of these compounds, including attempts to synthesise even more exotic multimetallic species starting from compounds of type V, e.g. $[(Et_2NCS_2)Pt(Ph_2PS)_2 - (arene)Ru_{-\mu}-{SPPh_2Pt(S_2CNEt_2)PPh_2S} Os(arene)(SPPh_2)_2Pt(S_2CNEt_2]^+$ etc. are now in progress.

Acknowledgement. We thank Johnson-Matthey plc for loans of ruthenium trichloride, osmium tetroxide and rhodium trichloride and the SERC (JDF) for financial support.

References

- 1 For detailed references see P.M. Maitlis, Chem. Soc. Rev., 10 (1981) 1; M.A. Bennett, M.I. Bruce and T.W. Matheson in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, Vol. 4, p. 796, 1982; H. Werner, Angew. Chem. Int. Ed. Engl., 22 (1983) 927; E.A. Seddon and K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984.
- 2 See D.A. Tocher, R.O. Gould, T.A. Stephenson, M.A. Bennett J.P. Ennett, T.W. Matheson, L. Sawyer and V.K. Shah, J. Chem. Soc. Dalton Trans., (1983) 1571 and ref. therein.
- 3 R.O. Gould, T.A. Stephenson and D.A. Tocher, J. Organomet. Chem., 263 (1984) 375.
- 4 M.A. Bennett and J.P. Ennett, Organometallics, 3 (1984) 1365.
- 5 R.O. Gould, C.L. Jones, D.R. Robertson, D.A. Tocher and T.A. Stephenson, J. Organomet. Chem., 226 (1982) 199.
- 6 R.O. Gould, C.L. Jones, T.A. Stephenson and D.A. Tocher, J. Organomet. Chem., 264 (1984) 365.
- 7 D.M. Anderson, E.A.V. Ebsworth, T.A. Stephenson and M.D. Walkinshaw, J. Chem. Soc., Dalton Trans., (1982) 2343.